
A Formal Theory of Cubical Complexes

bY
J. Paul Roth, E. G. Wagner and G. R. Putzolu

Formal Report

September 1, 1968 to April 30, 1969

Contract 952341

IBM Watson Research Center

Yorktown Heights, N. Y. 10598

Work partially performed for the Jet Propulsion Laboratory,

California Institute of Technology, sponsored by the

National Aeronautics and Space Administration under

Contract NAS7-100.

1.

A Formal Theory of Cubical Complexes

Summary

I. Finishing touches were put to the Multiple Output Minimi-

zation algorithm MOM, for logic circuits of two levels;

although additional improvements to the APL program will be

made. A paper on MOM has been accepted for presentation at the

Hawaii International Conference on System Sciences January 1969.

11. Work has continued on the development of F-notation, a

high-level language for the description of algorithms and

programs. A formal syntax for the F-notation has been de-

veloped, which enables one to contrast this language with e.g.

LISP.

111. An algorithm and APL program have been developed for the

diagnosis of failures of cyclic logic circuits, termed the

C-algorithm or C-alg. The C-algorithm is a generalization of

the D-algorithm, which worked for acyclic circuits. The run-

ning time of C-alg is very satisfactory:

sharing system, based on a S/360 mod 50, we have been able to

compute tests for failures in actual logic circuits of about 50

blocks within less than a minute (including time for simulating

the test); furthermore running time appears to be strikingly

independent of size. Running time does seem indeed to increase

with size but, because of certain features of the algorithm (a

plunge" of the D-chain to a Primary Output PO is made rather

than an orderly march of all ends of a D-chain to the PO'S as

in the APL time-

?I

2.

in the D-algorithm), the number of logical blocks does not

seem to be a very significant parameter.

is rather measured in terms of the "interwovenness" of the

loops of the circuit. The C-algorithm seems assured of.

practical usage.

"C-alg complexity"'

The number of single stuck-at-1, stuck-at-0 failures is

twice the number of lines of the circuit whereas the number of

multiple failures, due to a variety of physical phenomena such

as cracks, is very much larger.

compute a set of tests, fairly close to a minimum, which tests

all stuck failures such that, with high probability, it also

tests all multiple failures, of a given general category.

A strategy has been devised to

An F-program of C-alg is included in this report.

3 .

I.

Logic Circuits.

The Multiple Output Minimization Algorithm MOM for 2-Level

Work on MOM was mostly done during the last period

[RWLP 68).

and accepted for presentation at the Hawaii International Sym-

posium on System Sciences January 1969.

included in this report as appendix A. In particular it in-

A paper summarizing this work [RWL 691 was prepared

This summary is

cludes new and much simplified characterizations of the notions

of singular complex and the set Z of prime singular cubes.

An improved #-algorithm for computing the prime singular

cubes has been developed, which will be incorporated in the

APL program MOM.

its running time and space requirements.

This improvement should significantly improve

Essentially the com-

putation is' made to be iterative rather than recursive.

11. Development on F-Notation

1.. A formal syntax. Two approaches to the representation of

algorithms for switching theory were employed earlier in this

project: the calculus of a-objects and F-notation. Consider-

able effort and progress are being made to join these two

representations with the goal of producing a very general,

powerful, convenient and well-founded "language" for writing

algorithms.

4 .

A s presented earlier the wobject calculus was precise

The F- and formal but was neither easy to use nor concise.

notation, on the other hand, was easy to use and concise but it

was neither precise nor formal. Present efforts are directed

toward combining the best of both approaches. In particular

we are employing a (formalized) version of the syntax of the

original F-notation and we are employing an extended version of

the a-object calculus to provide precise, formal semantics to

go with this syntax.

of the F-notation.

The result will be the "official" version

We believe that this "language" will be of

great aid in accurately and concisely describing switching

theory algorithms in a manner which will both make them easy to

understand, easy to program, and easily accessible for mathe-.:

matical study and verification. At the same time this
1

language" should also be useful in a wide variety of other 11

disciplines--any discipline, in fact, in which it is necessary

to describe algorithms which manipulate strings, lists, (finite)

sets, tuples, etc. .
Work on the development of this formalized F-notation has

progressed to the point where we have begun the writing of a

report on the formal syntax and semantics of the language. We

plan to embed this report in a larger report which will contain

examples of the application of the language both to specific

switching theory algorithms and, as in our earlier paper on the

a-object calculus, to building up the fundamental data

5.

s t r u c t u r e s of switching theory.

W e a l so a n t i c i p a t e including a sec t ion on var ious informal

modifications of t h e language which f a c i l i t a t e t h e wr i t ing of

algorithms i n d i s c i p l i n e s i n which the usua l informal nota t ion

is not t h e same as t h a t of F-notation (e.g. i n formal

F-notation we use p r e f i x nota t ion while i n a r i t hme t i c one

genera l ly uses i n f i x no ta t ion (i.e., using i n f i x nota t ion we

w r i t e "a+b" while i n p r e f i x no ta t ion t h i s would be w r i t t e n

"+(a, b) ' I)) .
111. Logic Tes t ing

Most l o g i c c i r c u i t s , as developed on cards, e t c . , as p a r t

of a computer o r e l e c t r o n i c system using in t eg ra t ed c i r c u i t s

are cyc l i c , t h a t is, have feedback. To d a t e p r a c t i c a l

algorithms f o r computing tests t o d e t e c t f a i l u r e s of l o g i c

c i r c u i t s have been r e s t r i c t e d t o acyc l i c c i r c u i t s .

been a b l e t o extend t h e D-algorithm t o compute tests f o r c y c l i c

W e have

c i r c u i t s , t h i s algorithm has been programed i n APL and i t s

e f f i c i ency and failure-coverage appear t o be s a t i s f a c t o r y . A

desc r ip t ion of t h e problem, previous r e s u l t s , t h e new algorithm,

termed t h e C-algorithm, examples of t he workings thereof and

new problems w i l l now be given.

1.

INTRODUCTION: A heuristic algorithm C-alg for the computa-

tion of tests for failures in sequential or cyclic circuits

is described. 3
which for combinational circuits computes tests for failures

if they exist. First the problem is described. A logic

circuit S is formed by interconnection of combinational

logic blocks (like NOR or NAND).

one of its logic blocks has experienced a failure, the

problem is to find a test T consisting of a sequence of
input patterns to the primary inputs of S such that for the
corresponding sequence of output patterns, there is a dif-

ference between the correct output and the output for the
failing circuit. Illustrations of the operations of the D

and C-algorithms are given.

the models used in the.C-algorithm are described.

high-level description of the C-algorithm is given in
F-notation, an algorithmic language. Finally brief comments

are made concerning the efficiency of an APL version of the
algorithm.

It is an extension of the D-algorithm [

Given S and given that

Next a formal description of

Then a

2,

1, Description of Problem

A logic circuit 5 is formed from combinational
logic blocks, like NOR'S, NAND's, OR's, AND's, by inter-
connecting a set of these blocks together by identification
of inputs of one with outputs of others, in arbitrary
fashion.

Given a logic circuit S and given that one of its

logic blocks has experienced a failure F in some prescribed

manner, the problem is to find a test T consisting of a
sequence of input patterns such that for the corresponding
sequence of output patterns there is a difference between

the correct output and the output of the failing circuit.

First we will illustrate the D-algorithm which
computes a test for combinational (acyclic) circuits.

2. Illustratipn of D-Algorithm

The basis for the algorithm for diagnosis of cyclic
(or sequential) circuits is the D-algorithm version I1 as

described in [11 for acyclic (combinational) circuits. We

briefly recapitulate a slight extension of this via an ex-
ample. First let us consider an individual logic block, a

NOR block denoted N with its input and output lines labeled

8 , 9, 10, 11 as shown in Fig. 1.

0 0 0 1 1

\.

Figure 1 - A NOR Circuit and its Logical Description

3 .

The l o g i c a l desc r ip t ion of i t s behavior is depicted by the

t a b l e on the r i g h t s i d e of Fig. 1 t h e f i r s t row ind ica t ing

f o r example t h a t when l i n e 8 is 1, output l i n e 11 is 0,

r ega rd le s s of t h e va lue of t h e o the r input l i n e s .

t he c i r c u i t of Fig. 1 is embedded i n the l o g i c c i r c u i t of

Fig. 2.

Suppose

Figure 2 - I l l u s t r a t i o n of Operation of D-Algorithm

and assume t h a t l i n e 11 has f a i l e d by being stuck-at-0. This

is denoted by ass igning the va lue D (D f o r "diagnose") t o l i n e

11. Here D is t o be thought of as a v a r i a b l e d is t inguish ing

between the case of t h e occurrence o r non-occurrence of t h i s

f a i l u r e .

when D = 0, i t has occurred.

cube tc

When D = 1 t h i s p a r t i c u l a r f a i l u r e has not occurred;

One def ines i n i t i a l l y a test

cons i s t ing of x ' s i n a l l coordinates except l i n e 11,

XXXXXXXXXXDXXX.

4.

The x ' s i n d i c a t e t h a t no conditions have been y e t imposed upon

these l ines .

12, 13 t o l i n e 11.

(D-drive) t h e D t o a primary output (here l i n e 14). I n our

program (DBLG 111) l i n e 13 is chosen. I n order t o allow t h e

"D-chain" t o propagate through block 13, a 0 must be imposed

on l i n e 10 and i f t h i s is done then l i n e 13 is assigned t h e

value 5 which means, 'under these conditions t h a t l i n e 10 is a

0, t h a t I> = 1 i f l i n e 11 is stuck-at-0 and 5 = 0 otherwise

Blocks 11 and 13 are t o be thought of as 'ID-chained" together.

The " a c t i v i t y vector" A c o n s i s t s of t he successors

One of these l i n e s must be chosen to "drive"

I n order t o be s u r e t h a t l i n e 10 is 0 e i t h e r Pine 6 o r l i n e 7

must be assigned t h e va lue 1 but t h i s dec is ion is not made a t

t h i s p a r t of t h e algorithm, c a l l e d D-drive. The a c t i v i t y

vec tor now becomes 12, 14,

Again t h e l as t one is chosen, and i n order t o d r i v e t h e 5
through t h i s block l i n e 12 must be made an 0, y ie ld ing a D on

l i n e 14, y i e ld ing the test cube:

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4

t c = x x x x x x x x x 0 D 0 ~ D

The subalgorithm D-drive has now reached a primary output,

l i n e 14, and thus D-drive terminates. The next subalgorithm

t o be executed i s c a l l e d "consistency" o r CDRIVE; i n t h i s sub-

algorithm i n t e r n a l l i n e s , here 10 and 1 2 , which have been

assigned values, are " j u s t i f i e d " by s u i t a b l e choice of s i g n a l s

on primary input l i n e s .

primary input l i n e 1 t o t h e va lue 1.

For l i n e 12 t o be a 0, w e ass ign

5.

As for l i n e 10 being 0, t h i s may be achieved by l i n e 6 (or

l i n e 7 o r both) being assigned the value 1.

then cons i s t s of :

The "test cube"

1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14

t c = l x x x x l x x x O D O D D -

Fina l ly l i n e 11 being maintained a t a D means t h a t i n the

"good" c i r c u i t e i t h e r l i n e 8 o r 9 must be assigned the value

1 (so t h a t 11 w i l l be 0 i n t h e good c i r c u i t) :

8 . Fina l ly , l i n e 8 has the value 1 only when both input l i n e s

4 and 5 are 0. Thus the f i n a l test cube is:

we choose l i n e

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4

t c = l x x O O l x x x O D O ~ D

Since l i nes 1 through 7 are primary inputs t he ac tua l test

pa t t e rn is defined by:

1 2 3 4 5 6 7

1 x x o o 1 x

Here the x ' s may be assigned a r b i t r a r y values, independent of

each other ; thus t h e test cube ac tua l ly prescr ibes 8 individ-

u a l tests for t h i s f a i l u r e .

This summary does not cover the complexities of t h e D-algorithm

as it ac tua l ly exists i n D-ALG i n the APL implementation.

Elaborate t racking procedures and decision-making machinery

are involved.

the combinational diagnosis problem i n t h a t i f a test e x i s t s

i t is proven t h a t t h e D-algorithm w i l l a c tua l ly compute one.

Furthermore the D-algorithm ac tua l ly solves

6.

3. Illustration of C-Algorithm

We now extend the D-algorithm approach to the sequential case.

Before giving a formal description of the cyclic diagnosis
algorithm, we will discuss an example illustrating the work-

ings of the algorithm.

D-propagation. Consider the circuit shown in Fig. 3 , consist-

Figure 3 - D-Propagation in a Sequential Circuit.

ing of five logical blocks, two ANDS, two NORs, and an OR

interconnected as shown.

as shown, the four primary inputs being labeled 1, 2, 3 , 4 .

Assume in this circuit that the failure under consideration

is line 5 stuck at 0. A D is associated with this line and
the first: task is to "propagate" this D to a primary output,

which is possible in this case.

block with output line 7, line 9 must be placed in the value
0 (this w i l l be later on justified in the consistency oper-

ation).

primary output so that the D-drive (or D-propagation) ceases

operation.

The lines are labeled with integers

To "get through" the NOR

This line 7 assumes the value - D and line 8 is a

7.

Consistency. W e must now j u s t i f y the imposition of the

s i g n a l s on l i n e s 9 and 6, i n a previous t i m e frame. For l i n e

9 t o have t h e va lue 0 i t i s necessary t h a t t h e value of t h e

input t o t h i s block, l i n e 8, should be 1. (This, however, is

c l e a r l y not an inconsistency, as i t would be i n t h e combin-

a t i o n a l case, but t h e proper i n t e r p r e t a t i o n is t h a t one of

t he s i g n a l s occur i n .a "previous" t i m e frame.) We circle t h i s

@ i n the diagram t o i n d i c a t e t h a t i t occurs i n t h e p a s t i n

This may be achieved by l i n e 6 having t h e value 1 Fig. 4 .

(avoiding the feedback loop) which i n tu rn would r equ i r e t h a t

both l i n e s 3 and 4 also have the value 1. F i n a l l y the value D

on l i n e 5 (ind ica t ing t h a t l i n e 5 i s stuck-at-0) is maintained

by having l i n e s 1 and 2 a t values 1 i n t h e present t i m e frame.

I n Fig. 4 t h e values t h a t were imposed i n t h e previous t i m e

frame are enc i rc led . Thus the test , thus f a r generated, using

two t i m e frames is:

1 2 3 4 5 6 7 8 9

P r i o r Time Frame x x l l x l x x x

Present T i m e Frame .1 1 0 x - D 0 - D D 0

W e now t ake t h e primary input coordinates 1, 2, 3, 4 and "uni-

formize" them i n t h e following fashion:

xxll 1111

ll0X 1101

For a l l l i n e s €o r which i n one t i m e frame t h e value is c = 1

o r 0 and t h e o the r i s x w e change x t o t h i s common va lue (to

avoid races and hazards).

t h a t it is a v a l i d test.

how t h e C-algorithm works.

a combinational i terative model. W e ob ta in t h i s model by f i r s t

c u t t i n g the feedback loops t o render the c i r c u i t acyc l ic . Then

as many copies of t h i s c i r c u i t are produced as is des i red , one

copy f o r each t i m e frame; the pseudo-output of the i t h cu t l i n e

I f we simulate t h e test we can v e r i f y

This is one i n t u i t i v e explanation of

W e now ob ta in t h e same test using

8.

Ir I Q

d
d
.rl

9.

in the jth time frame joined to the pseudo-input of the ith

line in the (j 4- 1) s t time frame.

Thus cutting the feedback loop labeled 9 in Fig. 3 and making

two copies of it and joining as described, we get the combin-
ational iterative model shown in Fig. 5. Here the nodes

corresponding to the first time frame are labeled 1 through 9,
with 9
frame; the nodes corresponding to the next time frame are 1'
through 9'.

the label for the pseudo-input from a prior time 0

We have thereby transformed the sequential or cyclic circuit

diagnosis problem into a combinational. or acyclic diagnosis
problem with particular side conditions. One of these is

that line 9 must remain at value x, that is, the test

0' being developed cannot use any information from line 9
Furthermore the single failure of line 5 in the original cir-

0

cuit becomes in the iterative model a double failure of lines

5 and 5" Also line 3 cannot be "read" as a PO.

A test is computed in this model in the following way: In

order to generate the D on line 5' primary inputs 1' and 2'
are set at value 1. To initiate the D-DRIVE, this D "passes

through" NOR-block 7' by requiring that line 9 be given the

value 0 (to be justified in the consistency part of the

algorithm). Thus a 5 is attached to line 7' to go through
block 8 ' , which is a primary output so that the D-DRIVE ceases.

The consistency part of the algorithm then requires that line
6' set equal to 0 be justified and this is arbitrarily done by

setting primary input line 3' equal to 0. It is then recorded
that another choice could still be made to achieve this

10.

r e s u l t .

is done by s e t t i n g l i n e 8 equal t o 1 which i n tu rn is j u s t -

i f i e d by ass igning l i n e 6 equal t o 1 which is j u s t i f i e d by

making both primary inpu t s 3 and 4 equal t o 1, completing t h e

test cube. We now have:

Next l i n e 9 set equal t o 0 must be j u s t i f i e d . This

1 2 3 4 5 6 7 8 9

X X X l l X l X l O

1' 2' 3' 4' 5' 6 ' 7 ' 8' 9'
1 l O X D O D D D

- - -

W e then complete t h i s test by "eliminating" t h e x's on the

primary input p a t t e r n s t o 0 ' s and 1's attempting t o minimize

changes from one t i m e p a t t e r n t o t h e next.

I f we now r e i n t e r p r e t t h e obtained input p a t t e r n C

sequence :

as a e'

1235

1111

1101

of two input p a t t e r n s on S , we f i n d t h e same test we have

a l ready obtained.

4 . Formal Description of Models Used i n C-Algorithm

W e are given a Sequential c i r c u i t S , as described i n sec t ion 1.

By means of a program [DPR], we select out certain l i n e s as

feedback loops i n a "natural" manner so t h a t t h e i r c u t t i n g

renders t he c i r c u i t acyc l i c . The terminus of each c u t l i n e

poin t ing toward t h e c u t is termed a pseudo-output; those lead-

ing away, pseudo-inputs; the sets of these l i n e s are denoted

r e spec t ive ly SO and S I . Thus a combinational c i r c u i t C i s

obtained as shown on the two top r i g h t diagrams of Fig. 7,

The primary inpu t s P I of S i t s e l f and pseudo-inputs S I con-

s t i t u t e the primary inpu t s of C. The primary outputs PO of

S itself and t h e pseudo-outputs SO c o n s t i t u t e t he primary out-

p u t s of C. n we

make n copies of C and j o i n t h e appropr ia te pseudo-inputs of

t he i t h t o the pseudo-outputs of t he i + 1) st , t o form t h e

iterative combinational c i r c u i t C as shown i n the center of

Fig. 7 .

Now i f we wish t o compute a test of length

e

This model as can e a s i l y be seen i s isomorphic with the sequen-

t i a l c i r c u i t S' shown a t t h e bottom of Fig. 5 wherein a u n i t

delay A t is i n s e r t e d i n each of t h e s p e c i a l l y se l ec t ed feed-

back loops with no delay assoc ia ted with the combinational

p a r t of t h e c i r c u i t and the n input changes are separated i n

t i m e by t h e amount A t . H e r e i s assoc ia ted a sequence of n

primary input p a t t e r n s and n corresponding output p a t t e r n s

produced by a sequen t i a l operation of S ' .

12.

Q,
0

e, a
r(

I

Vl

a,
k
3
M

tz

H n" m

0
pc

I
I
1
I
I
I
I
I
I
c -

0

u

'I
I
1
I
I
I

x
I I

0-
0

* c,

0" .l.-..-.----g
.I

N c,

H

.rl "0 0

n c,

U
4

.rl

'rr,

d

u d
.rl

d

In C

f a i l u r e is not t r ans i en t) . Thus t o a s ing le f a i l u r e i n S

corresponds a mul t ip le f a i l u r e i n the i terative acyc l i c model

. Fig. 6 dep ic t s t h i s correspondence, drawing a t t e n t i o n ‘e
a l s o t o the f a c t t h a t no values 0 o r 1 may be assigned to the

pseudo-inputs SI of the f i r s t copy of C i n C . I n other words

i n developing a test w e can never assume a p a r t i c u l a r value

on the pseudo-inputs f o r the f i r s t copy of t he c i r c u i t i n Ce
and l ikewise no value can be encorporated from the pseudo-

outputs of the l as t one.

there w i l l be a f a i l u r e i n every copy (assuming t h a t the e

e

15.

0
pc

3
0
vl

a,
.d
c,
+-
fTJ
k
a,
c,
H
FI z
2
0
.d
c,

.A
P

0 u
E

I

u3
a,
k
3
M

tz

1.

I V . F-Notational Description of t h e C-Algorithm.

I n t h i s s e c t i o n we descr ibe t h e C-algorithm i n (a s e m i -

informal ve r s ion o f) t h e F-notation F / I .

given i n a series of levels--the higher (earlier) levels

The desc r ip t ion is

giving t h e o v e r a l l s t r u c t u r e of t h e algorithm, the lower

(l a t e r) l e v e l s g iv ing increas ing amounts of d e t a i l . The des-

c r i p t i o n is not given i n complete d e t a i l , t h a t is, we do not

spec i fy how t h e d a t a ob jec t s are t o be represented nor do we

p rec i se ly de f ine t h e p r imi t ive operations. What we have

attempted t o do is t o ca r ry t h e desc r ip t ion down t o t h e level

j u s t above t h a t a t which s p e c i f i c choices of no ta t ion and

implementation must be made. That i s , we have t r i e d t o give

t h e bas i c s t r u c t u r e of t h e algorithm (what must be done) while

avoiding f i x i n g on a p a r t i c u l a r way of doing something t h a t

might be done i n several ways. W e do not c l a i m , of course,

t h a t t h e desc r ip t ion given here is t h e only poss ib le descrip-

t i o n of t h e algorithm i n F/1, bu t only t h a t w e have l a rge ly

avoided a r b i t r a r y d e t a i l . Perhaps t h e most s i g n i f i c a n t example

of t h e use of high l e v e l desc r ip t ion i n t h i s presenta t ion i n

order t o avoid a r b i t r a r y d e t a i l i s t h e handling of t h e "tree

search" p a r t of t h e algorithm. Rather than spec i fy p rec i se ly

how t h e tree search is t o be handled we have merely ind ica ted

one, what information is re l evan t t o t h e tree search and two,

when and where i n t h e algorithm t h i s information i s employed t o

make dec is ions as t o what t o do next. This is done l a rge ly

2.

by means of naming a "repository" for the information (denoted

variously by the variables: bl, bl', blone, newbl, etc. as

appropriate) and by indicating the operations which feed,

update, and extract data from this repository.

The main meat of the algorithm is given in the first three

levels of description (and primarily in the third level). How-

ever one critical algorithm, a, which appears for the first
time at the third level is further described at the fourth and

fifth levels.

The written description which accompanies the F-algorithms

is purely informal and is presented in order to explicate the

intention behind the formal F-algorithms. In principle all

that is required to make the algorithm completely rigorous is a

precise definition for each of the primitive-algorithms (or

functions) and the primitive arguments. Our claim is that that

could be done in many different, reasonably straightforward,

ways to produce a complete algorithm which would indeed be an

algorithm for solving the sequential diagnosis problem dis-

cussed earlier in this report.

1st Level Description:

[t = calg(s, f, pmax)

(vl = f om-acyclic-cir cuit (s , f , pmax))
(t = f ind-test (v,)) 1

The above formula says that the algorithm calg has three

arguments: a sequential (cyclic)' circuit s , a failure f in

3 ,

that circuit, and a bound pmax on the number of time frames

which may be employed in finding the test.

ment says that these arguments are employed to form a acyclic

circuit from s (by cutting feedback lines) and the second state-

ment says that this result is then to be used to find a test.

This is, of course, a very high level description and as such

indicates very little about the algorithm.

2nd Level Description:

The first state-

[t "

(ac =

(t'

[t =

- (vl -

(vl -

(v2 -
(v2 -

-

-
-

(t "

form-acyclic-circuit(s, f, pmax) E

cut (SI 1

(s , f, Pm=, 0, 0, ac))l

find-test(s, f, pmax, p, q, ac) E

form-acyclic--circuit-chain(s, f, pmax, p, q, ac))

NO-ACC I t = NOTEST)

1 drive-to-form-test (v))

CANT-DRIVE I t = NOTEST)

simulate-test (v,)) 1

each

This second level description consists of two formulas

explicating one of the two statements of the first level

description.

The first formula describes the algorithm, form-acyclic-

circuit. The first statement in this algorithm forms an

acyclic circuit denoted - ac from the sequential circuit by em-

ploying an algorithm called - cut (which cuts the feedback lines

in s) . [We do not give any details on the algorithm cut since -

4 .

many different choices of algorithm would suffice.] The

second statement indicates the output oE this algocithm--namely

it says that the result v indicated in the first level des-

cription will be a sixtuple as indicated (and from the first

1

level description we know that this sixtuple will be the input

to the subalgorithm find-test).

The second formula describes the algorithm find-test. The

first step (first statement) is to form a chain of p + q + 1
copies of the acyclic circuit - ac.

this step will produce the result NO-ACC.

duced then the overall result is that there is NO-TEST. However

if the chain is produced then the algorithm drive-to-form-test

is applied to it to produce a candidate for a test. If no test

can be found then the output of this subalgorithm is CANT-DRIVE

and the overall result of the formula is again NO-TEST.

if a candidate is found then it is checked by the sub-algorithm

simulate-test

to be done if it is not a valid test is spelled out at the next

level of description).

If this cannot be done then

If NO-ACC is pro-

However

to see that it is a valid test (exactly what is

3rd Level Description:

{t = form-acyclic-circuit-chain (s, f, 9 PI 4 , ac) =-

(p + g > pmax I t = NO-ACC)

(ace = iterate (ac, p, q))

(dcf = pdcf (acc, f, p, 4))

(bl = record (dcf))

(t = (s , f, pmax, P , q , ac, ace, b1))l

[t = drive-to-form-test (s, f, pmax, p, q, ac, acc, bl)E

((u, bl') = dalg (acc, bl))

(U = NOTEST A(P + q - > pmax). 1 t = CANT-DRIVE)

((P', q') = step (P, 4, P m 4)

(u = NO TESTA(^ + q < pmax) I
t = find-test (s , f, pmax, p', q ' , ac))

(t = (s, f, pmax, p, q , ac, acc, u, bl')]

{t = simulate-test (s, f, pmax, p, q , ac, ace, u, bl') E

(v = sim (s, f, u))

(v = l l t =u)

(wl = drive-to-form-test (s,f, pmax, p, q , ac, acc, bl')

= CANT-DRIVE I t = NOTEST) (wl
(t = simulate-test (w,))]

The third level description explicates the three subalgo-

rithms employed in the description of the algorithm find-test.

6.

The first formula describes the algorithm, form-acyclic-

circuit-chain. The description is given completely in terms of

primitives, that is, functions and algorithms which are not

furtFer expiicated formally within F/I in this treatment.

Interpreting the formula we see that if E + 9 > pmax then the

result is NO-ACC (since this means that the bound, pmax, on the

number of time frames has been exceeded). If E + 9 5 pmax

then we go on to the second statement which says that we form

the acyclic circuit chain, E, using the primitive-algorithm

iterate which connects together p + q + 1 copies of the
acyclic circuit - ac. The next step is to apply the primitive-

algorithm pdcf which is intended to develop the initial infor-

mation, - dcf, needed to test for the failure _f in - acc, in

particular this algorithm finds the d-cube of failure associ-

ated with - f in - acc. Finally the last statement records this

result in - bl which, as mentioned earlier, serves in this pre-

sentation as a "repository" of all information needed to con-

trol the flow of the algorithms. The result of the algorithm

is then the indicated 8-tuple.

The second formula in the third level description des-

cribes the algorithm drive-to-form-test.

in this algorithm employs the algorithm dalg (described at the

The first statement

fourth and fifth levels in this treatment) to try to form a

test - u and to record the steps taken in that process as - bl'.

If no test can be found then dalg will put out the result

7.

NOTEST.

time frames has been reached then the r e s u l t of t he algorithm

is CANT-DRIVE which s i g n i f i e s t h a t no test can be found with

the given bound. I f da lg produces NOTEST but t he bound pmax

has not y e t been reached then new values f o r p and g are

chosen by means of t h e p r imi t ive algorithm s t e p , and the

(second level) algorithm f i n d - t e s t is employed using these

new va lues (denoted by p' and 1') of p and 9.

i f t he va lue of da lg is not of t he form (NOTEST, - b l ') then the

r e s u l t of t h e algorithm is the ind ica ted 9-tuple.

I f t h i s happens and the bound, pmax, on the number of

While f i n a l l y ,

The f i n a l formula i n t h e t h i r d level desc r ip t ion descr ibes

t h e algorithm c a l l e d s imula te - tes t . The f i r s t s t e p i n t h i s

algorithm is t o check out t h e proposed test - u (developed by

drive-to-form-test) by means of t h e p r imi t ive algorithm - s i m .

I f - u is a v a l i d tes t f o r f a i l u r e f. i n s equen t i a l c i r c u i t - s then

- s i m (s , f , u) takes the value 1.

of the algorithm is thus va l ida t ed , test - u.

test - u is not v a l i d t h e algorithm then iterates t o form another

proposed test using t h e above described algorithm drive-to-form-

test and i t s e l f .

When t h i s happens the r e s u l t

I f t he proposed

-

8.

4 th Level Description:

[(u, b l ') = dalg (acc, b l) E

1 (bdrv?(bl) = 1 A conbk? (b l) = 1

I (u, b l ') = consistency-drive (t c (b l) , acc,

conbk (b 1)))

(bdrv?(bl) = 1 A conbk?(bl) = 0 I (u ,b l ')

= (NOTEST, b l))

(vl = select-actives (acc, b l))

= NOTEST I (u, b l ') = (NOTEST, b l)) (5
(v2 = drive-to-test-cube (v,))

(v2 = NOTEST I (u, b l) = (NOTEST, b l))

= (NODRIVE, bl")

= d a l g (acc, b l"))

I (u, b l ') (v2

(v3 = consistency-drive (v,)) 1

The fou r th level desc r ip t ion given here presents a more

d e t a i l e d exp l i ca t ion of t h e algorithm daLg. It w i l l be noted

from looking a t t he higher l e v e l desc r ip t ions t h a t t h i s algo-

rithm can be entered under a v a r i e t y of conditions. I n p a r t i -

cu l a r t h e d a l g algorithm may be entered f o r t he f i r s t t i m e , o r

a f t e r i t has a l ready proposed a number of tests which turned

out not t o be va l id . Depending on what has happened before,

the algorithm does d i f f e r e n t things. Thus the f i r s t two state-

ments i n t h e desc r ip t ion of d a l g are checks on the repos i tory

- b l t o see what it should do. The func t ion brdv? i n the f i r s t

9 .

statement checks to see if the algorithm was last performing a

"B-drive" (finding appropriate inputs to force the driving of a

given d to the outputs) if this is the case and if there are

still alternative ways to try doing the "B-drive" as indicated

by conbk? (bl) = 1

employed to try these out using the appropriate information

from the repository - bl as selected by the primitive-algorithm

conbk. On the other hand, if the algorithm was last performing

a "B-drive" bur there are not alternative left to investigate

(indicated by conbk?(bl) = 0) then the result is (NOTEST, bl)

indicating that no test can be produced. If though the

algorithm was not last doing a "B-drive" but is rather doing a

"D-drive" (trying to drive a d signal from the failure to an

then the consistency-drive algorithm is

output) then it will go immediately to the third statement in

the algorithm. Then, as shown by the fifth level description

given below, the algorithm will select an active line on which

to attempt to drive the d signals using the algorithm select-

actives. If there are no more active lines available the result

will be NOTEST, otherwise the algorithm drive-to-test-cube is

employed to drive the d from this active line to an output thus

forming a test cube. The performance of this subalgorithm will

result either in the result NOTEST indicating that no test can

be produced, or in the result NO-DRIVE in which case the con-

tents of the repository are suitably updated and dalg is

applied to the resulting new arguments (this happens when there

10.

is no way to drive from the particular active line chosen and a

new active line must be selected), ar finally, the drive may be

completely successful in which case a test-cube is indeed pro-

duced and then the consistency-drive algorithm is employed to

perform the "B-drive" operation.

5th Level Description:

[t = select-actives (acc, bl) E

(actives = actives (acc, bl))

(actives = 0 A dbk?(bl) = 1

I t = select-actives (acc, dbk(b1)))

(actives - @ A dbk?(bl) = 0

1 t = NOTEST)

(line = select-element-of (actives))

(bl" = update-actives-in-bl (bl, actives , line)
(t = (acc, bl", line))]

[t = drive-to-test-cube (acc, bl, line) z

(ppdc = produce-prim-d-cubes (acc, line, bl))

(ppdc = fl I t = (NODRIVE, bl))

(pdc = select-an-element-of (ppdc))

(newbl = update-ppdc-in-bl (bl, ppdc, pdc, line))

(tc' = tc (bl) npdc)

(tc' = @ 1 t = drive-to-test-cube (ace, newbl, line))

(newerbl = update-test-cube-in-bl (newbl, tc', line))

(tc'npo (acc) # @ 1 t = Jtc', acc, newerbl)

(t = (MODRIVE, newerbl)

[(u, bl') = consistency-driv (tc, ace, bl) E

(bltwo = set-bdrv-equal-one (bl))

(b = produce-b(tc, ace, bltwo))

(bCpi(acc) I (u, bl') = (tc, bltwo))

(inline = select-line-from(b - pi (acc)))
(new-b = (b - inline) predecessors(inline, acc))

(blthree = update-b-in-bl(new-b, bltwo)

((u,bl) = drive-tc(tc, acc, blthree, inline))]

[(u, bl') = drive-tc(tc, acc, bl, inline) 2

(set-psc = form-primitive-singular-cubes(inline, acc, bl))

(set-psc = 0 A conbk?(bl) = 0 1 (u, bl) = dalg(acc, reset(b1)))

(set-psc = 0 I dalg(acc, conbk(b1))

(new-set-psc = (set-psc) - psc)
(newbl = update-bl-with-psc(b1, psc, new-set-psc))

(newtc = tcnpsc)

(newtc = 63 I (u, bl) = drive-tc(tc, acc, newbl, inline))

(newer-bl = update-bl-with-new-tc(newb1, new-tc))

((u, bl) = consistency-drive(new-tc, acc, newer-bl))

The fifth level description describes the algorithms

select-actives, drive-to-test-cube, and consistency-drive in

terms of primitive-algorithms and algorithms already described

at a higher level. Note that the algorithm consistency-drive is

described using two formulas--this allows us to go into greater

detail without resorting to an additional level of description.

The first formula describes the algorithm select-actives.

The first step is to perform the primitive-algorithm actives

which is intended to find the active lines (outputs of circuit

elements which have d's on one or more inputs) on which the

algorithm has not as yet tried to drive the d. (The reason

that - bl is an argument of actives is that - bl contains the infor-

mation as to which lines have already been tried). If there are

no active lines that have not already been tried, (so that

actives = a) and if there is a way to "back up" the search (as
indicated by -- dbk?(bl) = 1) then the algorithm "backs up" and

computes select-actives(acc -3 -- dbk(b1)).

not possible to "back up" then the result is NOTEST.

there are active lines still to be tried then one of these lines

is selected by the primitive-algorithm select-element-of(actives)

and the repository - bl 2s updated by the primitive-algorithm

update-actives-in-bl to indicate that this line has been tried

and the final output is then the indicated triple.

If actives = 0 and it is

However, if

The algorithm drive-to-test-cube employs the output triple

of the algorithm select-actives to drive a d to a primary-output

of - acc along the line line. The first step is to produce the

primitive d cubes associated with the line line that have not

already been tried. This is done with the primitive-algorithm

produee-prim-d-cubes (again, & contains the information as to

which d-cubes have already been tried). If all the primitive

13.

d-cubes assoc ia ted wi th l i n e have a l ready been t r i e d (as indica-

t ed by ppdc = @)

some p r imi t ive d-cube is se l ec t ed using the primitive-algorithm

select-an-element-of(ppdc).

t o record t h i s s e l e c t i o n using t h e primitive-algorithm

then t h e r e s u l t is (NODRIVE, b l) ; otherwise

Next t h e repos i tory - b l is updated

update-ppdc-in-bl. Then t h e se l ec t ed d-cube is in t e r sec t ed

with t h e latest (p a r t i a l) test-cube - - tc(b1) recorded i n - b l .
(Note, t h e recording of - t c i n - b l w a s i n i t i a t e d by t h e statement

(b l - = record(dcf)) - i n t he t h i r d l e v e l desc r ip t ion of form-

accyclic-circuit-chain.) I f t h i s i n t e r s e c t i o n (in t e r f ace) is

empty (i .e. , i f - tc ' = Ib) then t h e algorithm t r ies again using

newbl i n place of - b l .

(p a r t i a l) test-cube is s to red i n the repos i tory using the

However i f - tc' # 0 then t h i s new

primitive-algorithm update-tes t-cube-in-bl. The algorithm then

checks t o see i f t h e j u s t produced test-cube d r ives a l l t he way

t o t h e primary outputs po. I f t h i s i s the case then t h e r e s u l t

is the ind ica ted t r i p l e (which becomes the input t o consistency-

d r i v e) ; while i f it does not then t h e r e s u l t i s (NODRIVE,

newerbl) which, (as indica ted by t h e fou r th level descr ip t ion)

w i l l cause r een t ry of d a l g with t h e repos i tory updated so as t o

employ t h i s new (p a r t i a l) test-cube.

The purpose of t he algorithm consistency-drive is, given

a test-cube K, t o a t t e m p t t o f ind a way t o set t h e inputs of

t he c i r c u i t - acc so as t o r e a l i z e t h i s test-cube. I n t h i s

algorithm we again use - b l (and v a r i a n t s thereon) t o designate

14.

t h e r epos i to ry f o r t h e information bui ld up i n t h e "tree search"

f o r a way t o set t h e inpu t s ,

is t o record, i n bl, t h a t t h e algorithm i s doing t h e

consistency-drive (see beginning of fou r th l e v e l desc r ip t ion

of da lg) .

The f i r s t s t e p i n t h e algorithm

This is done by means of a primitive-algorithm

c a l l e d set-bdrv-equal-one. The next s t e p is t o produce b, the

c o l l e c t i o n of l i n e s which have s i g n a l s spec i f i ed on them but

whose predecessors must now have s i g n a l s spec i f i ed by the

algorithm.

i f - b c pi(acc) - then we are done and (E, E') = (&, bltwo).

Otherwise the algorithm picks an element of - b which is not a

primary input (i n order t o attempt t o set the c o r r e c t s i g n a l s

I f a l l the elements of - b are primary inputs (i . e . ,

on i t s predecessors t o br ing i t t o the spec i f i ed s t a t e) .

t h i s l i n e , c a l l e d i n l i n e , is chosen we then update the

repos i tory t o record t h i s s e l ec t ion . F ina l ly we apply the

algorithm dr ive- tc i n order t o set t h e values on the inputs of

t he element which d r i v e s the l i n e i n l i n e .

When

The algorithm dr ive- tc starts by producing the set of

p r i m i t i v e s ingu la r cubes assoc ia ted with the l i n e in - l ine what

have not a l ready been t r i e d . I f this set is empty (i f they have

a l l been t r i e d) and t h e r e is no way t o continue the "tree

search" (as ind ica t ed by conbk?(bl) - = 0) then t h i s means t h a t

t h e r e is no way t o set t h e primary inpu t s so as t o r e a l i z e t h e

given test-cube. When t h i s happens the repos i tory is reset so

as t o s tar t t h e algorithm dalg over again t o f i n d a new

15.

candidate f o r a test cube (i n p a r t i c u l a r i t i s a t t h i s po in t

t h a t t h e repos i tory i s set so t h a t bdrv?(bl) # 1--see d iscuss ion

of da lg) . I f , on t h e o the r hand, t he set set-psc is empty but

there are a l t e r n a t i v e s t o t r y on t h e consistency d r i v e then the

p r imi t ive algorithm conbk(b1) "backs up" t h e d a t a i n the reposi-

t o r y t o the appropr ia te po in t and d a l g is then employed (with

bdrv? = 1) t o continue t h e consistency dr ive . F ine l ly , i f t he

set set-psc i s not empty then the primitive-algorithm se l ec t -

element-of(set-psc) chooses an element of set-psc and updates

the r epos i to ry t o i n d i c a t e t h i s s e l ec t ion . The se l ec t ed element

is then in t e r f aced with t h e e x i s t i n g test-cube tc t o a t t e m p t -
t o form a new test-cube newtc specifying the s i g n a l s on l i n e s

c l o s e r t o the primary inputs. I f the a t t e m p t i s unsuccessful

(i f - t c and psc are incompatible) w e w i l l g e t temp,, = P, i n

which case drive-tc i s applied t o t h e new contents of t he

r epos i to ry (i n order t o t r y the remaining members, i f any, of

set-psc).

updated t o inc lude t h e new test cube, newtc,

a p p l i e s consistency-drive

providing input s i g n a l s t h a t w i l l g ive rise t o the des i red

test-cube.

I f t h e attempt is successfu l then the repos i tory is

and the algorithm

i n order t o complete t h e process of

1.

Appendix A

An Algorithm and a Program for the
Multiple-Output 2-Level Logic-Mlnimization Problem
By J. Paul Roth*, E. G. Wagner* and Leon S. Levy#
*IBM Research Center, Yorktown Heights, N. Y.

#IBM Research Center and University of Pennsylvania

Abstract: An algorithm and program is given for the problem of

finding a minimum-cost multiple-output logic circuit of two

levels which realizes a given function mapping strings of

labelled bits into strings of labelled bits.

cal problem currently having application to implementation of

logic circuits in large-scale integration. A notation and

This is a classi-

calculus is devised involving singular cubes, covers and com-

plexes for efficient treatment of the problem. A succinct

description of the algorithm itself is given in a newly defined

functional notation, termed the F-notation. A computer program

for this algorithm following the "F-description" has been

written for the IBM System/360 APL interactive system.

1. Why the problem is - technologically interesting, The

problem of economical implementation of logic circuits having

two levels of logic has had continuing application in the

design of data processing machines ranging in complexity from

EAM machines through the 1401 to STRETCH [ERW 611. For space

applications see [RP 691. Cost minimization for multiple-

outputs is an outstanding problem in logic. Muller's encoding

2 .

[54] of the multiple output problem into an "equivalent" single-

output problem served to allow the formulation [M 651 RP 691 of

useful approximations although handicapped by the required

addition of abundances of don't-care cubes.

techniques [B 611 was another approach.

Bartee's tag

2. New Mathematics. A function G mapping labelled strings of

0"s and 1's into labelled strings of 0's and 1's may be des-

cribed as a "function I~ table" 4 listing all the pairs of such

correspondences. More compact is our singular notation: here

a function is described by an ensemble or singular cover or

s-cover of - singular cubes or s-cubes consisting of pairs of
labelled strings of 0,1, x separated by a vertical line

segment. We shall illustrate. Suppose that the input lables

(variables). are 1, 2, 3 , 4 and output lables a, b, c. Then

the array on the left of Fig. 1 would define a function G in

- -

conventional fashion, while the array on the right would be an

equivalent s-cover.

Fig. 1: A singular cover and its interpretation.

1 2 3 4 a b c

x l l x 1 x 1

o x 0 0 x o x

Work performed for the Jet Propulsion Laboratory, California
Institute of Technology, sponsored by the National Aeronautics
and Space Administration under Contract NAS-7-100.

3 .

1 2 3 4

x l l x

The left portion of a singular cube is termed the input part

a b c
1 x 1

value of the output variables a and c are 1, regardless of the

values of 1 and 4; this cube makes no specification for the

value of variable b (since it has the value x) for these input

conditions. A similar interpretation holds for the other

singular cube given. Those input conditions not defined by the

singular cover are termed don't care conditions. In our model,

however, the output part of all s-cubes will consist of 1's and

x's alone, with the don't-care conditions also explicitly listed

in this form. Thus a function F is defined by s-covers C and D

of the care and don't care conditions respectively. - --
We say that s-cube' a = al.. . arl bl. e . b contains s-cube

S

= c1...crldl...d if a = c or x and d. = c or x; we

denote this condition [r g . We also say that a is a face

of g. Thus (Olxl(lxx)~ (Olxxllxl). A vertex consists of a

singular cube al...arlbl...b wherein all a.'s are 0 or 1 and

all but exactly one b is x, which one is 1. An s-cube defines

the set of all vertices contained in any of its cubes. s-cover

S i i J j

-

S 1

j

A is said to contain s-cover B if all vertices of B are con-

tained in cubes of A. If A contains B we write B A. Covers

are partially ordered by the relation E. Let F be a function
..

4 .

1 2 3 4

x l l x

defined by s-covers C and D of care and don't-care conditions;

we shall say that s-cover E realizes F if C E E [z C U D.

a b c
l l x

Let a - cost be associated with each s-cover, of a very general

type, (cf. [RW 691). An example would be any linear function

of the number of inputs and outputs not equal'to x.

Problem: Given F find a realization of minimum cost.

E.g . , if F is given by the s-covers C , D shown on the left of

Fig. 2 then M is a minimum realization.

The multiple-output extraction algorithm MX is a method for

solving this problem. To define MX the following definitions

are made. A s we have seen, each cover C defines an ensemble

V of vertices. The cover C also defines an ensemble of cubes

termed a singular complex or s-complex K being the (unique)

s-cover K, maximal under set-theoretic inclusion, whose en-

semble of vertices is V. Clearly, V C E K. An s-cube of

an s-complex K is said t o be prime if no other cube of K

contains it as a face.

5.

MX is described in an algorithmic language called

F-notation [RW 691. This describes MX as a recursively linked

ensemble of F-functions. One of the first functions in MX is

the F-function #-algorithm, #alg (CUD), which computes the set

Z of all prime cubes of the complex K defined by s-cover CUD.

A prime cube e is sa,id to be an extrema1 if it covers a

vertex of C (a care vertex) which no other cube of Z does. It

can be' shown that every minimum M contains e or one of its

faces.

solution initially empty (d) , computes the set E of extremals.

A second F-function - E (C,D,S), where S is a partial

If E # d , the "distinguished" faces F of E are extracted

from R and added to S and D, to form a new complex K # F and

complex defined by s-covers C-F and DUF. F-function - E(C-F,

DUF, Su F) is then executed again, with the new arguments

shown. This time a "less-than" operation is performed: given

s-cubes u and v we say u <v if, roughly speaking,

(cf [RW 6 9 1) cost (u) - >cost (v) and the vertices of

contained in those of It can be shown that where u, v

belong to K, and u < v , there is a minimum not containing u.

Thus u is dropped from consideration.

subsequent executions of E, Z is "appropriately" reduced from

its non-maximal cubes under < to form Z = < (D,S,Z) .

u are

v UD.

Thus, in the next and

Hence a new extraction problem is defined and this process

is repeated either until a solution is obtained or until no new

extremals appear. In this case a branching function B is

6.

executed and a minimum finally obtained, possibly through re-

cursive execution of - B.

3. APL-program. A computer program for MX following the

"F-description", has been written for the IBM System/360 APL

interactive system [FI 681 using the Iverson notation. This

program is an interactive one providing typewriter printout of

intermediate solutions. During execution of .B? for example,

For fuller explanation see [RW 691.

manual selection may speed convergence.

Fig. 3 - A geometrically represented problem.

7.

Fig. 4 - A minimum solut ion.

A 0 0 0 ~ x 1 1 ~ ~ 1

6 B 0 0 x 1 ~ 1 1 ~ 1 ~

g c O x l l x l l ~ x l

D O l l x x l l ~ l x

H 0 1 1 x 0 ~ 1 ~ 1 1

I o o o x o o x ~ 1 1

K 0 x 1 1 0 0 ~ ~ 1 1

M ~ 1 1 0 0 0 0 ~ 1 1

1.

Appendix B

In this section of the appendix we offer the present

version of the formal syntax f o r abstract F-notations. In

- this context "abstract" means that no specific semantics are

given (that is, the set R, the relation =, and the function

are not specified).

we shall present the abstract semantics for such abstract

F-notations and we will describe a specific F-notation, the

F-notation F/1, in detail.

Formal Syntax of F-Notations

An F-notation is specified by giving the following sets

In the forthcoming report on F-notations

and mappings:

an infinite set of symbols called the set of

function-symbols.

F -+ N (N = the non-negative integers) called the
k h A - .

arity-function; if F E ~ thena (F) is called the

arity of F and F is said to be of arity a (F).

an infinite set of symbols called the set of data-

representatives.

an equivalence relation on E, called equals.

the set of equivalence classes of &as determined

by =, called the set of data-objects.

a finite subset of F called the set of grimitive-

function-symbols. -

2.

Q a function which assigns to each P in P a total i
function from 2 into D- (for cx(Pi) = o
(f (P .) is some particular element of D), u is called

the primitive-function-assignment.

1

V an infinite set of symbols called the set of

variables..

Where :

1.

2.

The setsz, l& andJLare disjoint.

For each n - > 0 the set of elements ofzof arity

n is infinite.

(Note: For all "practical purposes", "infinite" can be taken

to mean, "very large".)

We define the set of F-expressions - as follows:

1. If v E V then v E E.

2. If F E F .and a(F) = 0 then F E E (we say then

that F is an F-constant or a 0-ary

free-F-expression,

3. If r E R then r E E.

4. If F E F and a(F) = n > 0 and V~,...~V E V n

then

F(vl, ..., v) is an n-ary free-F-expression).

F(vly . . . ,v) E E (we say then that n

n
5. If F E F and a(F) = n > 0 and X~,...~X E E n

then F(X~,...~X) E E. n

3 .

We define the set S of F-statements as follows:

If v E L and e E E then (v = e)
CLg

1.

is an execution-statement.

If el' e and e3 E Z and v E L then 2 2.

(el = e2]v = e,)

and

are conditional-statements.

3. If S is either an execution-statement or a

conditional-statement then s is an F-statement.

Given an F-expression e E E let V(e) denote the set of

elements of V occurring in e. Given an F-statement s let V (s)

denote the set of elements of V occurring in s . Given a string -
n of F-statements let V (p) = U1-l v(si>. = S1"'Sn -

We define the set of S-formulas as follows:

Let e be either an F-constant F k P, or a

free-F-expression F(vlY...,v) where, again F k P. Let n

A denote

1. (v

2. If

an

the null string.

= e 3 A is an S-formula.

(v = e f p) is an S-formula and (w = el) is

F-statement where w c {v) U V(e) UV(p)

And let v E V, v k V(e).

then (v = e p (w = e,))

is an S-formula.

4.

3. If (v = e f p) is an S-formula and

(el = e21v = es>

F-statement where

[resp. (el # e21v = e3) is an

v(el) U V(e2)U V(e3)Cv(e) U (~(p) - {VI)
then

[resp. (v = e p(e f e2]v = e,)) 1

is an S-formula.
1

We define the set of F-formulas as follows:

If (v = e E p) is an S-formula and (v = e) is an 1
F-statement such that

'[v =I e E p(v = e,) 1
is an F-formula. ,

Given an F-formula [v = e E p] when e = F, an F-constant

or e = F(v ..., v) a free-F-expression, define 1' n

H([v = e p I) = {F}.

(Given an F-formula f we call H(f) the head-symbol of f).

Given a string fl...f n>l,of F formulas, define n'
H(f l...f n) = H(fl...fn-l) U H(fn).

By an F-algorithm we mean a string of F-formulas f 1"' f ,n - > 1,

such that, for k = 1, ..., n - 1,
H(f l...f) f I H(fn+l) = d . n

REFERENCES

CM 541

CB 611

[ERW 611

[RP 691

[RW 691

Muller, Application of Boolean Algebra to Switch-
, IRE Trans.

pp. 6-12.

Bartee, Computer Design of Multiple Output Logical
Networks, IRE Trans. on Elec. Computers,
Vol. EC-10, pp. 21-30.

Ewing, Roth, Wagner, Algorithms for Logical Design
AIEE Communications and Electronics, N o . 56,
Sept. 1961, pp. 450-458.

Milles, Switching Theory, Vol. I, Combinational
Circuits, John Wiley and Sons, Inc., N. Y. 1965.

Falkoff, Iverson, APL 360 User's Manual, Inter-
national Business Machines Corporation, Yorktown
Heights, N. Y. 10598.

Roth, Perlman, Space Applications of a Minimiza-
tion Algorithm, IEEE Trans. on Aerospace and
Electronic Systems. Submitted for publication.

Roth, Wagner, A Calculus and an Algorithm for a
Logic Minimization Problem - together with an
Algorithmic Notation, IBMJ of R and D., also
published as RC 2280.

--

